1,286 research outputs found

    Fuzzy Adaptive Tuning of a Particle Swarm Optimization Algorithm for Variable-Strength Combinatorial Test Suite Generation

    Full text link
    Combinatorial interaction testing is an important software testing technique that has seen lots of recent interest. It can reduce the number of test cases needed by considering interactions between combinations of input parameters. Empirical evidence shows that it effectively detects faults, in particular, for highly configurable software systems. In real-world software testing, the input variables may vary in how strongly they interact, variable strength combinatorial interaction testing (VS-CIT) can exploit this for higher effectiveness. The generation of variable strength test suites is a non-deterministic polynomial-time (NP) hard computational problem \cite{BestounKamalFuzzy2017}. Research has shown that stochastic population-based algorithms such as particle swarm optimization (PSO) can be efficient compared to alternatives for VS-CIT problems. Nevertheless, they require detailed control for the exploitation and exploration trade-off to avoid premature convergence (i.e. being trapped in local optima) as well as to enhance the solution diversity. Here, we present a new variant of PSO based on Mamdani fuzzy inference system \cite{Camastra2015,TSAKIRIDIS2017257,KHOSRAVANIAN2016280}, to permit adaptive selection of its global and local search operations. We detail the design of this combined algorithm and evaluate it through experiments on multiple synthetic and benchmark problems. We conclude that fuzzy adaptive selection of global and local search operations is, at least, feasible as it performs only second-best to a discrete variant of PSO, called DPSO. Concerning obtaining the best mean test suite size, the fuzzy adaptation even outperforms DPSO occasionally. We discuss the reasons behind this performance and outline relevant areas of future work.Comment: 21 page

    Functionalised particles using dry powder coating in pharmaceutical drug delivery:promises and challenges

    Get PDF
    Introduction: Production of functionalised particles using dry powder coating is a one-step, environmentally friendly process that paves the way for the development of particles with targeted properties and diverse functionalities. Areas covered: Applying the first principles in physical science for powders, fine guest particles can be homogeneously dispersed over the surface of larger host particles to develop functionalised particles. Multiple functionalities can be modified including: flowability, dispersibility, fluidisation, homogeneity, content uniformity and dissolution profile. The current publication seeks to understand the fundamental underpinning principles and science governing dry coating process, evaluate key technologies developed to produce functionalised particles along with outlining their advantages, limitations and applications and discusses in detail the resultant functionalities and their applications. Expert opinion: Dry particle coating is a promising solvent-free manufacturing technology to produce particles with targeted functionalities. Progress within this area requires the development of continuous processing devices that can overcome challenges encountered with current technologies such as heat generation and particle attrition. Growth within this field requires extensive research to further understand the impact of process design and material properties on resultant functionalities

    Characterisation and surface-profiling techniques for composite particles produced by dry powder coating in pharmaceutical drug delivery

    Get PDF
    The production of composite particles using dry powder coating is a one-step, environmentally friendly, process for the fabrication of particles with targeted properties and favourable functionalities. Diverse functionalities, such flowability enhancement, content uniformity, and dissolution, can be developed from dry particle coating. In this review, we discuss the particle functionalities that can be tailored and the selection of characterisation techniques relevant to understanding their molecular basis. We address key features in the powder blend sampling process and explore the relevant characterisation techniques, focussing on the functionality delivered by dry coating and on surface profiling that explores the dynamics and surface characteristics of the composite blends. Dry particle coating is a solvent- and heat-free process that can be used to develop functionalised particles. However, assessment of the resultant functionality requires careful selection of sensitive analytical techniques that can distinguish particle surface changes within nano and/or micrometre ranges

    Observation of large intrinsic anomalous Hall conductivity in polycrystalline Mn3_3Sn films

    Full text link
    We report the observation of anomalous Hall effect in Mn3_3Sn polycrystalline thin films deposited on Pt coated Al2_2O3_3 substrate with a large anomalous Hall conductivity of 65(Ω\Omegacm)1^{-1} at 3K. The Hall and magnetic measurements show a very small hysteresis owing to a weak ferromagnetic moment in this material. The longitudinal resistivity decreases sufficiently for the thin films as compared to the polycrystalline bulk sample used as the target for the film deposition. The anomalous Hall resistivity and conductivity decreases almost linearly with the increase in the temperature. A negative magnetoresistance is observed for all the measured temperatures with the negative decrease in the magnitude with the increase in temperature

    Multi-objective optimisation for minimum quantity lubrication assisted milling process based on hybrid response surface methodology and multi-objective genetic algorithm

    Get PDF
    © 2019 by SAGE Publications Ltd.Parametric modelling and optimisation play an important role in choosing the best or optimal cutting conditions and parameters during machining to achieve the desirable results. However, analysis of optimisation of minimum quantity lubrication–assisted milling process has not been addressed in detail. Minimum quantity lubrication method is very effective for cost reduction and promotes green machining. Hence, this article focuses on minimum quantity lubrication–assisted milling machining parameters on AISI 1045 material surface roughness and power consumption. A novel low-cost power measurement system is developed to measure the power consumption. A predictive mathematical model is developed for surface roughness and power consumption. The effects of minimum quantity lubrication and machining parameters are examined to determine the optimum conditions with minimum surface roughness and minimum power consumption. Empirical models are developed to predict surface roughness and power of machine tool effectively and accurately using response surface methodology and multi-objective optimisation genetic algorithm. Comparison of results obtained from response surface methodology and multi-objective optimisation genetic algorithm depict that both measured and predicted values have a close agreement. This model could be helpful to select the best combination of end-milling machining parameters to save power consumption and time, consequently, increasing both productivity and profitability.Peer reviewedFinal Published versio

    Exposure to NO2 in occupational built environments in urban centre in Lahore

    Get PDF
    Increased economic growth, urbanisation and substantial rise in automobile vehicles has contributed towards the elevated levels of air pollution in major cities in Pakistan. Aone week study was conducted by using passive samplers to assess NO2 concentration in occupational built environments at two most congested and populated sites of Lahore. Both sites were locatedon the busy roads of Lahore. At Site-I the highest concentration was in outdoors followed by corridor and indoor. While at Site II all the sampling location wereindoors and level were comparable to that of outdoor levelsat Site I. The results suggest the likely contribution of ambient sources in exposure to indoor NO2 in educational and other occupational built environments in urban centres

    Changes in the mountain river discharge in the northern Tien Shan since the mid-20th Century: Results from the analysis of a homogeneous daily streamflow data set from seven catchments

    Get PDF
    This study is an assessment of the changes in seasonal and monthly flow in seven catchments draining the northern Tien Shan Mountains in Central Asia over a period from the 1950s to the present day. The purpose is to provide a first assessment of the flow response to climate change in regionally important catchments given their contribution to the water resource. All the catchments have a natural flow regime, and are therefore sensitive to climate change, but differ in area, elevation and glacial extent. Trends in flow were characterised using the Mann-Kendall test for standard meteorological seasons and individual months for mean flow, five flow quantiles and peak-over-threshold series for the period 1974–2013 at all sites and from the 1950s where data were available. The results were related to trends in seasonal temperature and precipitation from the regional high elevation meteorological stations and glacier mass balance, equilibrium line altitude (ELA) and accumulation area ratio (AAR) records from the Tuyuksu glacier. The results show no reduction in streamflow in any catchment or season in the northern Tien Shan since the 1950s. Positive trends in all flow indicators, including peak over- threshold frequency, were observed in catchments with higher glacierization of over 10% and extensive presence of rock glaciers and permafrost indicating increased melt over the period which is characterised by a long-term increase in temperature. These trends were most evident in autumn and winter. In catchments with low glacierization, variability in summer flow was controlled primarily by precipitation of the preceding cold season. Correlation with glacier mass balance was weak but changes in ELA and AAR indicate that production of liquid runoff at higher elevations contributes to increased streamflow partly compensating for the declining glacier area. The observed changes in streamflow do not suggest any immediate problems with water availability in the northern Tien Shan. On the contrary, increased autumn and winter flows point at a more prolonged recharge of reservoirs and aquifers though eventually this water source will be exhausted

    Magneto-transport and electronic structures in MoSi2_2 bulks and thin films with different orientations

    Full text link
    We report a comprehensive study of magneto-transport properties in MoSi2_2 bulk and thin films. Textured MoSi2_2 thin films of around 70 nm were deposited on silicon substrates with different orientations. Giant magnetoresistance of 1000% was observed in sintered bulk samples while MoSi2_2 single crystals exhibit a magnetoresistance (MR) value of 800% at low temperatures. At the low temperatures, the MR of the textured thin films show weak anti-localization behaviour owing to the spin orbit coupling effects. Our first principle calculation show the presence of surface states in this material. The resistivity of all the MoSi2_2 thin films is significantly low and nearly independent of the temperature, which is important for electronic devices
    corecore